22 research outputs found

    Field measurements in MSAT-X

    Get PDF
    Results from the most recent MSAT-X field experiments, the Tower-3 Experiment and the JPL/FAA/INMARSAT MARECS-B2 Satellite Experiment, are presented. Results that distinguish the propagation environment of the tower set-up are given and explained. The configuration and flight variables of the aeronautical experiment which used an FAA aircraft and an INMARSAT satellite are described. Results that highlight the disturbances on the aeronautical satellite channel are presented. The roles of satellite-induced signal variations and of multipatch are identified and their impact on the link is discussed

    Multiple access capacity trade-offs for a Ka-band personal access satellite system

    Get PDF
    System capability is critical to the economic viability of a personal satellite communication system. Ka band has significant potential to support a high capacity multiple access system because of the availability of bandwidth. System design tradeoffs are performed and multiple access schemes are compared with the design goal of achieving the highest capacity and efficiency. Conclusions regarding the efficiency of the different schemes and the achievable capacities are given

    MSAT-X: A technical introduction and status report

    Get PDF
    A technical introduction and status report for the Mobile Satellite Experiment (MSAT-X) program is presented. The concepts of a Mobile Satellite System (MSS) and its unique challenges are introduced. MSAT-X's role and objectives are delineated with focus on its achievements. An outline of MSS design philosophy is followed by a presentation and analysis of the MSAT-X results, which are cast in a broader context of an MSS. The current phase of MSAT-X has focused notably on the ground segment of MSS. The accomplishments in the four critical technology areas of vehicle antennas, modem and mobile terminal design, speech coding, and networking are presented. A concise evolutionary trace is incorporated in each area to elucidate the rationale leading to the current design choices. The findings in the area of propagation channel modeling are also summarized and their impact on system design discussed. To facilitate the assessment of the MSAT-X results, technology and subsystem recommendations are also included and integrated with a quantitative first-generation MSS design

    Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    Get PDF
    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included

    Experiments for Ka-band mobile applications: The ACTS mobile terminal

    Get PDF
    To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed

    Land-mobile field experiments in Australia

    Get PDF
    The Mobile Satellite Experiment/Australia Mobile Satellite Experiment (MSAT-X/AUSSAT) experiment offered the first true land-mobile satellite configuration to evaluate the MSAT-X technologies and equipment. Both quantitative data tests and qualitative voice link demonstrations were successfully conducted. From the collected data, system performance in typical land-mobile conditions was extracted. A set of propagation characteristics corresponding to the wide range of environments encountered was also obtained. A brief description is given of the MSAT-X/AUSSAT experiment and a summary of its results analyzed to date

    NASA's mobile satellite development program

    Get PDF
    A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies

    Performance of DA/FDMA architecture proposed for MSS

    Get PDF
    The system architecture proposed for the Mobile Satellite Service (MSS) by the National Aeronautics and Space Administration (NASA)/JPL is presented. The demand assigned Frequency Division Multiple Access (FDMA) scheme is described, and results for the associated network access protocol developed by JPL are presented. Both the total number of users that the system can support and the system spectral efficiency are given for a variety of traffic conditions, including those postulated for the Mobile Satellite System Architectures and Multiple Access Techniques Workshop. The results are given for both first- and second-generation one- and two-satellite systems

    Propagation-related AMT design aspects and supporting experiments

    Get PDF
    The ACTS Mobile Terminal (AMT) is presently being developed with the goal of significantly extending commercial satellite applications and their user base. A thorough knowledge of the Ka-band channel characteristics is essential to the proper design of a commercially viable system that efficiently utilizes the valuable resources. To date, only limited tests have been performed to characterize the Ka-band channel, and they have focused on the needs of fixed terminals. As part of the value of the AMT as a Ka-band test bed is its function as a vehicle through which tests specifically applicable to the mobile satellite communications can be performed. The exact propagation environment with the proper set of elevation angles, vehicle antenna gains and patterns, roadside shadowing, rain, and Doppler is encountered. The ability to measure all of the above, as well as correlate their effects with observed communication system performance, creates an invaluable opportunity to understand in depth Ka-band's potential in supporting mobile and personal communications. This paper discusses the propagation information required for system design, the setup with ACTS that will enable obtaining this information, and finally the types of experiments to be performed and data to be gathered by the AMT to meet this objective

    A satellite-based personal communication system for the 21st century

    Get PDF
    Interest in personal communications (PCOMM) has been stimulated by recent developments in satellite and terrestrial mobile communications. A personal access satellite system (PASS) concept was developed at the Jet Propulsion Laboratory (JPL) which has many attractive user features, including service diversity and a handheld terminal. Significant technical challenges addressed in formulating the PASS space and ground segments are discussed. PASS system concept and basic design features, high risk enabling technologies, an optimized multiple access scheme, alternative antenna coverage concepts, the use of non-geostationary orbits, user terminal radiation constraints, and user terminal frequency reference are covered
    corecore